Camera Voltage Loss over Cat5

Maximum Distance / Voltage Loss Calculator
This calculator is used to determine the maximum distance a device can be powered over a length of cable. When running power over any cable there will be a voltage drop. Many power supplies are solt with a slightly higher voltage output then specified to compensate for the voltage drop over a cable length. However when running power over long distances the power supply will not be able to compensate for such a large voltage drop.

CCTV cameras are recommended to run within 10% of their rated voltage, this is called the input voltage tolerance. Example, if the camera requires 12volt dc or 12vDC power, your power voltage to the camera should be between 10.8vDC to 13.2vDC. Anything less may cause the camera to not function properly. Anything more can cause permanent damage to the camera that will not be covered under warranty. DO NOT OVER-VOLT ANY EQUIPMENT! Most common results from not having enough power are infrared lighting may appear dim, camera video may appear dark or distorted, horizontal lines on the video, or no picture.

When using this calculator it's extremely important to take into account the CCTV camera's current. This is typically measured in mA (milliamps) or Amps and can usually be found on the camera's specifications. If you are unsure of your camera's voltage and current specifications contact your CCTV camera distributor. Most camera current specifications are based on its maximum current draw. Example, you have a CCTV camera with a 200' infrared range, during day time when the infrared LEDs are not on the camera only requires 200mA while at night time when the infrared LEDs turn on that camera will draw 1200mA.

This is very important to take into consideration when using this calculator because this variable in current can cause you to over-volt your camera! Current is a huge factor when calculating voltage loss. A camera with no infrared LEDs (200mA) can be run using CAT5 cable and a 12vDC transformer up to 300' while an infrared camera (500mA) bearly makes it half that distance.

Our best and simplest solution for running power over long distance is a 24vAC to 12vDC power converter. These devices are great for long distance power, simply run the standard 24vAC power over the cable and convert back to 12vDC at the end of the run. This solves problems with variable voltage on IR and mechanical cameras. The converter will take anywhere from 18vAC - 28vAC this allows for a much larger voltage drop and the ability to maintain your 12vDC power.

TVI Camera Technology Explained

HD Analog Overview

HD Analog technology was first introduced to the security industry in 2010, as an alternative to traditional Analog and IP video surveillance. A very promising new technology, HD Analog was able to deliver high-definition video over coaxial cabling (HD over coax), and greatly reduce installation and operational complexity (relative to IP surveillance solutions).

However, the market was slow to adopt HD Analog at the time, as the technology was still unproven, relatively expensive, and the benefits failed to outweigh the switching costs for most security integrators.

Since, the demand - and expectation - for higher definition surveillance video continued to accelerate, fueling the development of more efficient and cost-effective HD Analog technology formats, and significantly driving down total cost of ownership. As a result, HD Analog has become one of the fastest growing categories in the history of video surveillance, and threatens to outpace - and eventually replace - traditional Analog technology sales in the very near future.

HD Analog BenefitsHD Analog Benefits

When compared to traditional Analog or IP technologies, HD Analog offers significant and measurable advantages. In fact, HD Analog is commonly marketed as “the best of both worlds” – offering megapixel resolution images, but the simplicity and cost of Analog.

Key benefits of HD Analog technology include:

Megapixel resolution
Simple installation
Zero latency
Low cabling requirements
Longer transmission
Transition friendly
Cost-effective

When Is HD Analog Right for Your Surveillance Application?

HD Analog is ideal for surveillance applications that require detailed video, such as facial identification and license plate recognition. HD Analog solutions support up to 1080p resolution, and feature the ability to zoom in on live and recorded video for a more detailed view.

HD Analog is a very cost-effective solution for both new and replacement installations – enabling you to utilize legacy analog cameras (dependent upon HD Analog technology employed) and legacy coaxial cabling – saving you valuable installation time and equipment costs.

HD Analog solutions are also ideal for long distance installations, or applications requiring longer cable runs – providing the ability to transmit HD video up to 1600’ with zero latency (dependent upon HD Analog technology employed).

Finally, HD Analog is ideal for Analog system upgrades. HD solutions offer backwards compatibility with existing analog cameras, allowing you to upgrade to a high-definition surveillance solution over time and at your own pace – as your budget allows.

The Future of HD Analog

Without question, HD Analog technology will continue to evolve. Future versions of HD Analog are predicted to provide additional benefits and capabilities, including:

Ultra-High-Definition (UHD) video – “4K” resolution, or 4000 horizontal pixels
Higher frame rates – beyond 30 fps
Power over coaxial cable (PoC)

HD Analog is clearly poised to change the landscape of video surveillance. Stay tuned.

Compare HD Analog Technology

Since HD Analog technology launched in 2010, several HD Analog formats have been developed, including: HD-SDI, AHD, HD-CVI and HD-TVI. While all HD Analog options offer the same basic benefits compared to analog or IP – delivering HD video over standard coaxial cable – formats vary in the resolution, transmission distance, camera compatibilities, and configurability.

Advertisement
Compare HD Analog Technology
HD Analog CCTV vs. IP Video Surveillance

IP cameras (commonly referred to as Network cameras, or Megapixel cameras) feature an embedded video server that converts images into a digital format inside of the camera. Because IP cameras are embedded devices and do not need to output an analog signal, they are capable of capturing far higher resolutions than traditional analog cameras.

IP cameras connect to a local network via a single Ethernet cable, which transmits power, video and data to and from the camera. Additionally, IP cameras have a unique IP address, and can be accessed directly via the network – providing remote access and storage flexibility.

Without question, the primary benefits of IP security cameras are resolution and image quality – allowing users to capture forensic level detail, and to digitally zoom in on any image without losing clarity. This results in more effective identification, and provides greater accuracy for automated analysis, alarms and notifications.

Most common IP solutions range from 1.3 megapixel (1280 x 1024 pixels) to 5.0 megapixel (2592 x 1944 pixels), and some manufacturers offer IP cameras that deliver 20+ megapixel resolutions. However, the resolution and frame rate captured for a specific application are typically limited by storage and bandwidth constraints, and higher megapixel models can be cost prohibitive.

IP video surveillance solutions have experienced a dramatic increase in popularity, driven by the capability to capture higher-resolution megapixel video, an overall increase in adaption and understanding of IP-based technologies, simplification and increasing compatibility of IP security technology, and reductions in cost as demand (and production volume) continues to grow.
Benefits of IP

Capable of higher resolutions than traditional analog solutions
Transmit power, video and data over single Ethernet cable
IP camera can operate as a standalone network device, capable of functioning without a network video recorder

Limitations of IP

Require a complex network infrastructure
Offer limited transmission distance
Commonly experience video latency
Require considerable network bandwidth
Can be extremely costly compared to traditional analog and comparable Analog HD systems

The Advantages of HD Analog

HD Analog systems are capable of delivering up to 1080p HD video – addressing the primary shortcoming of traditional analog solutions. 1080p (or 2.1 megapixel) cameras capture more than 4x the resolution of the most powerful analog cameras – allowing users to effectively zoom in to view the level of detail required for most common security applications.

Additionally, HD analog systems are capable of transmitting video over standard coaxial cabling (new or existing) – dramatically reducing the time, cost and complexity associated with a comparable IP solution. HD cameras can transmit video up to 1600’ – over 5x the distance of an IP system, and transmits with zero latency – a very common issue with most IP installations.

HD Analog systems are as simple to install and maintain as traditional analog solutions – not requiring the networking equipment and knowledge associated with IP solutions. And because HD Analog lives off the network, they don’t interfere with other network-related activities, or consume valuable network bandwidth required by other devices.

There are no licensing or recurring fees associated with HD Analog solutions, and all channels come completely enabled – for the life of your product. Comparable IP solutions commonly require the purchase of a license for every channel used, and a recurring annual fee to maintain that license. This is an important consideration from a perspective of both management complexity and total cost of ownership.

And importantly, HD technology has become increasingly accessible. With the growing demand for higher definition video and the recent emergence of more cost-effective technologies, the market price for HD Analog solutions has reduced dramatically – almost to Analog levels. HD Analog equipment is now available for less than half the price of a comparable IP solution.

HD CCTV vs. Analog CCTV

Analog CCTV is the most established, and continues to be the most commonly used, security technology – specifically for smaller camera count, single-site applications. Analog systems include one or more analog cameras that transmit video via coaxial cabling, which connects directly to an analog DVR (digital video recorder). The DVR uses video capture cards to convert the analog signal to a digital signal for storage and network transmission.

Traditional analog systems offer resolutions ranging from CIF (352 x 240 pixels) to D1 (720 x 480 pixels), and recent analog technology offerings promote even higher resolutions of up to 960H (960 x 480 pixels).

However, while analog solutions are capable of capturing clean video evidence, these maximum resolutions limit the ability to digitally zoom in on live and recorded video without significant loss of image clarity, and typically do not provide the level of detail required for applications such as facial recognition or license plate identification.

That being said, analog video security solutions are a popular option for many residential and small business applications, as they are simple to install and operate, and very affordable when compared to traditional IP solutions.
Benefits of Analog CCTV

Simple to install, operate and maintain
Affordable compared to traditional IP solutions
Universally compatible with other analog technologies

Limitations of Analog CCTV

Analog CCTV cameras offer limited resolution (up to 960H, or 960 x 480 pixels)
Insufficient resolution for applications requiring greater levels of detail, such as facial recognition or license plate identification

The Advantages of HD Analog

HD Analog technology delivers the simplicity and affordability of traditional analog solutions, while addressing many of the limitations listed above.

HD Analog systems are capable of delivering megapixel resolution HD video (up to 1920 x 1080 pixels) over standard coaxial cabling, providing the ability to digitally zoom in on both live and recorded video to capture the forensic level of detail needed for positive identification.

Additionally, HD Analog solutions are compatible with existing analog CCTV cameras and can leverage existing coaxial cabling, dramatically reducing the time and cost associated with a transition.

And importantly, HD technology has become increasingly accessible. With the growing demand for higher definition video and the recent emergence of more cost-effective technologies, the market price for HD Analog solutions has reduced dramatically – almost to Analog levels.

DFARS and NIST Security and Access Control Protocol compliance assistance from AAA Alarms

AAA Alarms is Rhode Island’s leading provider of security to Department of Defense Contractors, having Underwriter's Laboratory approvals for UL 2050 standards. Call AAA today for assistance with compliance with mandated DFARS and NIST standards for CUI to be implimented. AAA offers Access control service with audit trails, DoD Certified Security Alarm Systems for Classified and Unclassified Documentation storage rooms. Compliance with facility tracking of personnel entering, badging, with full audit trail and Cloud Information Storage compliant with Level 4 and Level 5 Standards for Computerized Access Control Systems.

The problem of tailgating with Access Control

The Problem Of Tailgating

One of the biggest weaknesses of automated access control systems is the fact that most systems cannot actually control how many people enter the building when an access card is presented. Most systems allow you to control which card works at which door, but once an employee opens the door, any number of people can follow behind the employee and enter into the building. Similarly, when an employee exits the building, it is very easy for a person to grab the door and enter the building as the employee is leaving.

This practice is known as "tailgating" or "piggybacking". Tailgating can be done overtly, where the intruder makes his presence known to the employee. In many cases, the overt "tailgater" may even call out to the employee to hold the door open for him or her. In these cases, good etiquette usually wins out over good security practices, and the intruder is willingly let into the building by the employee.

Tailgating can also be done covertly, where the intruder waits near the outside of the door and quickly enters once the employee leaves the area. This technique is used most commonly during weekends and at nights, where the actions of the more overt tailgater would be suspicious.

Solutions To The "Tailgating" Problem

First, recognize that the tailgating problem is probably the biggest weakness in your security system. This is particularly true at doors that handle a high volume of employee and visitor traffic. Many security managers spent a lot of time worrying about unauthorized duplication of access cards and computer "hackers" getting into their security system over the network. It is far more likely that someone who wants access to your facility will simply "tailgate" into the building rather than using one of these more exotic methods to breech your security.

The practice of overt tailgating can be reduced somewhat through employee security awareness training. If employees are frequently reminded of the tailgating problem, they are less likely to let a person that they do not know into the building deliberately.

It is difficult to overcome the problem of covert tailgating through employee security awareness alone. While it would be possible to ask employees to wait at the door until it locks after they pass, it is probably not likely that this procedure would be followed except under the most extreme circumstances.

The problem of covert tailgating can usually only be reliably solved through the use of special "anti-tailgating" devices.

"Anti-Tailgating" Devices

To minimize the problem of tailgating, the security industry has created a number of "anti-tailgating" devices. These devices include mechanical and optical turnstiles, security revolving doors, security portals, and doorway anti-tailgating devices.

The essential function of each of these devices is that they permit only one person to enter or leave the building at a time. They either do this by providing a physical barrier that only allows one person to pass, or electronically by providing sensors that detect when a person attempts to tailgate in, or when more than one person tries to enter using the same card.

The following is a brief summary of each of the common types of anti-tailgating devices:

HALF-HEIGHT MECHANICAL TURNSTILE

?

Description: Rotating mechanical barrier arms installed at waist height prevent passage through opening. Electrically-controlled, using valid access card causes arms to unlock allowing passage of one person. Turnstile can be controlled in both directions, or allow free-passage in one direction.

Approximate cost: $3,000 to $5,000 per opening.

PROS: Lowest cost anti-tailgating device, readily accepted by most users, relatively unobtrusive, well-proven and reliable.

CONS: Can easily be climbed over or under, requires separate door or gate for emergency exit and for handicapped users, easily defeated by knowledgeable intruder, can be somewhat noisy when operated.

Comments: Good choice for use at visitor lobbies or employee entrances where cost is a consideration. Works best when turnstile can be observed by security officer or receptionist to allow detection of people climbing over or under the device.

FULL-HEIGHT MECHANICAL TURNSTILE

?

Description: Rotating mechanical barrier arms installed to prevent passage through opening. Extends from floor to height of approximately eight feet. Electrically-controlled, using valid access card causes arms to unlock allowing passage of one person. Turnstile can be controlled in both directions, or allow free-passage in one direction.

Approximate cost: $5,000 to $8,000 per opening.

PROS: Provides good security at a moderate cost. Well-proven and reliable.

CONS: Obtrusive in appearance, requires separate door or gate for emergency exit and for handicapped users, lacks sophisticated anti-piggybacking detection features, can be somewhat noisy when operated.

Comments: Good choice for commercial and industrial facilities where security and cost considerations are more important than appearance.

OPTICAL TURNSTILE

?

Description: Consists of two freestanding pillars mounted on each side of opening. Equipped with electronic sensor beams that transmit between pillars. Passing though opening interrupts sensor beam and causes alarm unless valid access card has first been used. Sensor beams are connected to computer processor that detects when more than one person attempts to pass though opening on a single card. Turnstile can be controlled in both directions, or allow free-passage in one direction. Available with or without mechanical barrier arms and in a wide variety of styles and finishes.

Approximate cost: $15,000 to $20,000 per opening.

PROS: Aesthetically-pleasing appearance, accommodates handicapped users, does not require separate emergency exit, has sophisticated anti-piggybacking detection systems, provides good visual and audible cues to users.

CONS: Expensive, units without barrier arms provide no physical deterrent, must be used at an entrance manned by security guard, relatively high "false alarm" rate, some user training required to work effectively.

Comments: Good choice for use in manned building lobbies where aesthetics prevent the use of a half-height manual turnstile.

SECURITY REVOLVING DOOR

?

Description: Standard revolving door that has been specially modified for security use. Extends from floor to a height of approximately eight feet. Typically has multiple quadrants equipped with electronic sensors that detect number of people in each quadrant. Use of valid access card allows one person to pass through door, if more than one person attempts to enter, door sounds alarm and reverses to prevent entry. Door can be controlled in one or both directions.

Approximate cost: $35,000 to $50,000 per opening.

PROS: Provides best protection against tailgating and piggybacking, fast, handles high volumes of traffic, unobtrusive in appearance, provides energy savings when used at exterior entrances.

CONS: Very expensive, requires separate door or gate for emergency exit and for handicapped users, door cannot be used for loading/unloading of large objects, relatively high maintenance costs.

Comments: Good choice for use at unattended building entrances where appearance is important.

SECURITY PORTAL (also called "Security Vestibule" or "Mantrap")

?

Description: Consists of passageway with door at each end. Regular swinging doors or automatic sliding doors can be used. Passageway is equipped with sensors that detect total number of people present. Sensors can include electronic beams, floor mat switches, and weight detectors. Video cameras with analytic software can also be used (see video analytics below). To use, user enters passageway and closes door behind him. He then proceeds to second door, and uses access card to enter. If more than one person is present in passageway, portal sounds an alarm and prevents entry. Portal can be controlled in one or both directions.

Approximate cost: $15,000 to $50,000 per opening.

PROS: Provides good protection against tailgating and piggybacking, unobtrusive in appearance, accommodates handicapped users, does not require separate emergency exit, allows load/unloading of large objects.

CONS: Expensive, relatively slow, cannot support large volumes of traffic, some versions can have high maintenance costs.

Comments: Good choice for use at unattended building entrances with relatively low traffic volumes and for entrances into high security internal areas, such as computer rooms.

DOORWAY ANTI-TAILGATING DEVICE

?

Description: Consists of devices installed on each side of regular doorway. Equipped with electronic sensor beams that transmit between devices. Passing though opening interrupts sensor beam and causes alarm unless valid access card has first been used. Sensor beams are connected to computer processor that detects when more than one person attempts to pass though opening on a single card. Doorway can be controlled in both directions, or allow free-passage in one direction.

Approximate cost: $5,000 to $7,000 per opening.

PROS: Easy add-on to existing doors; provides good protection against tailgating and piggybacking, unobtrusive in appearance, accommodates handicapped users, does not require separate emergency exit, allows loading/unloading of large objects, relatively inexpensive.

CONS: Must be used at an entrance manned by security guard, does not provide good visual and audible cues to users, some false alarms.

Comments: Good choice for use at doorways with relatively low traffic volumes and where conditions do not permit the use of another type of device.

VIDEO ANALYTICS ANTI-TAILGATING SYSTEMS

Description: Consists of video cameras installed at doorway opening. Cameras are connected to a computer with special video analytics software that detects and analyzes people and objects at the door. System may use multiple cameras that allow precise determination of object size, height, and direction of travel. When used at single door, video analytics anti-tailgating systems work similarly to doorway anti-tailgating devices and sound alarm when more than one person attempts to enter through door after a valid access card has been used. Video analytics anti-tailgating systems can also be used with security portals to both sound alarm and deny access when more than one person attempts to enter.
Approximate cost: $10,000 per opening for single door system, $15,000 to $20,000 for security portal system.

PROS: Easy add-on to existing doors; provides good protection against tailgating and piggybacking, unobtrusive in appearance, accommodates handicapped users, does not require separate emergency exit, allows loading/unloading of large objects.

CONS: Single door systems do not provide a physical barrier so must be used at an entrance manned by security guard, requires frequent user training to prevent false alarms, relatively expensive.

Comments: Popular choice for use at computer rooms and other high-security facilities.

Selecting the Right Anti-Tailgating System

Choosing the right anti-tailgating system is an important decision. You need to consider your overall level of security risk, your ability to provide security staff to monitor your entrances and respond to alarms, and your budget for initial purchase and ongoing maintenance of the anti-tailgating systems.

Have additional questions about the prevention of tailgating or the selection of the right anti-tailgating device? Please contact us.

Anti Passback feature of Access Control Systems explained

Anti-Passback Feature in Access Control Systems

The anti-passback feature is designed to prevent misuse of the access control system. The anti-passback feature establishes a specific sequence in which access cards must be used in order for the system to grant access.

The anti-passback feature is most commonly used at parking gates, where there is both an “in” reader at the entry gate and an “out” reader at the exit gate. The anti-passback feature requires that for every use of a card at the “in” reader, there be a corresponding use at the “out” reader before the card can be used at the “in” reader again. For the typical user of the parking lot, this works fine, because the user would normally swipe their card at the “in” reader to get into the lot in the morning, and swipe it at the “out” reader to get out of the lot in the evening. So long as the sequence is “in – out – in – out – in – out”, everything works fine. However, if a user swipes his card at the “in” reader to get in, and then passes his card back to a friend, the card would not work the second time when it was swiped by the friend. The attempt to use the card a second time would create an “in – in” sequence that is a violation of the anti-passback rules, and this is why access would be denied.

Anti-passback can also be used at employee entrance doors. This requires that a card reader be installed on both the inside and the outside of the door. Employees are required to both "card-in" when they enter the building and "card-out" when they leave the building. The anti-passback feature is also commonly used with turnstiles.

There is an expanded version of the anti-passback feature called “regional anti-passback”. This establishes an additional set of rules for card readers inside of the building itself. Basically, this rule says that unless a card is first used at an “in” reader at the building exterior, it cannot be used at any reader within the interior of the building. The theory is that, if a person did not enter through an approved building entrance, he or she should not be permitted to use any of the readers within the building.

Depending on the access control system manufacturer, there may be additional anti-passback features in the system. Some of these features could include "timed anti-passback", which requires that a designated amount time pass before an access card can be used at the same reader again, and "nested anti-passback" which requires that readers be used in only designated sequence to enter or leave a highly-secured area.

Denying access when a user attempts to use a card out of sequence is sometimes called "hard" anti-passback. Hard anti-passback means that when a violation of the anti-passback rules occurs, the user will be denied access. Some access control systems also offer a feature known as "soft" anti-passback. When a system is using this option, users who violate anti-passback rules are permitted access, but the incident is reported to the person managing the access control system so that corrective action can be taken - most often notifying the offending employee that the access card should be used in the proper sequence in the future.

The anti-passback feature can also be integrated with the corporate computer system, preventing users from logging on to the network at their desktop computer unless they have properly entered the building using their access card. This feature can also temporarily disable the users remote log-on privileges while the user is in the building - the theory being that if the user is at work, there is no reason for someone from off-site to be logging on to the network using his or her user name and password. When the user leaves the building at the end of the day, his or her remote log-on privileges are turned back on.

Monitor anywhere, anytime

Protect your livelihood w Detection and Surveillance Solutions. Business Grade HD Cameras–24/7 Monitoring Services: Detection Packages, Surveillance Packages.

Apartment Building Intercom System Repairs-Call AAA Alarms today, they are the best!

AAA Alarms specializes in the retrofitting of Apartment and commercial intercom systems. Why struggle with your outdated system any longer? AAA has solutions to repair and replace your system with totally new technology, eliminating much of the corroded and obsolete defective wiring from your old system, and replacing it with systems that you can remotely manage, change tenant numbers, and add access control technology with PIN Codes or Key Cards. Contact the experts at AAA Alarms today for a no obligation estimate to repair/replace your system now.

Low Cost Internet Monitoring including Remote login from your smartphone and secure line $19.95! Available for homeowners

AAA offers a low cost solutions for home owners to remotely control their alarms from their smartphones, avoid having a phone line for the alarm, and have line security against a "cut line" intrustion.  AAA offers a secure interrogated internet connection to their UL listed 24 Hr Monitoring Station.  Any cut line, will generate and alarm condition and notify the homeowner.  All of this is available for $19.95

Guard Reponse for your alarm available from AAA Alarms!

Keeping with AAA Alarms tradition of offering the best in security, AAA offers Guard Response to your premises upon alarm activation.   Contact our Sales Team for more information on this service.

AAA Alarms meets and exceeds the needs for Marijuana cultivators, groweries and dispensaries in RI and Massachusetts

AAA Alarms meets and exceeds the needs for Marijuana cultivators, groweries and dispensaries in RI and Massachusetts

AAA Alarms custom designs video surveillance systems that meet and exceed the Regulations as adopted by Rhode Island and Massachusetts departments of business regulation for Medical Marijuana cultivators, groweries and dispensaries.  AAA also offers high security alarm systems that meet DBR specifications and Underwriters Laboratories guidelines.  AAA is well versed in interpreting these regulations to design systems for cultivator's license compliance in Rhode Island and Massachusetts, helping them build state of the art compliant cultivation facilities.

http://www.dbr.state.ri.us/documents/rules/medical_marijuana/DBR_Medical_Marijuana_Regulations_Final.pdf

Pin It on Pinterest